Three firms carry inventories that differ in size Firm As in
Three firms carry inventories that differ in size. Firm A\'s inventory contains 2000 items, firm B\'s inventory contains 5000 items, and firm C\'s inventory contains 10,000 items. The population standard deviation for the cost of the items in each firm\'s inventory is  = 144.
 
 A statistical consultant recommends that each firm take a sample of 50 items from its inventory to provide statistically valid estimates of the average cost per item. Employees of the small firm state that because it has the smallest population, it should be able to make the estimate from a much smaller sample than that required by the larger firms. However, the consultant states that to obtain the same standard error and thus the same precision in the sample results, all firms should use the same sample size regardless of population size.
 
 Using the finite population correction factor, compute the standard error for each of the three firms given a sample of size 50 (to 2 decimals).
 What is the probability that for each firm the sample mean will be within 25 of the population mean  (to 4 decimals)?
| Firm A | |
| Firm B | |
| Firm C | 
Solution
1.
a)
As
SE = s*fpc/sqrt(n)
and
fpc = sqrt[(N-n)/(N-1)]
then
fpc = sqrt((2000-50)/(2000-1)) = 0.987667831
Thus,
SE = 144*0.987667831/sqrt(50) = 20.11353468 [ANSWER]
******************
b)
As
SE = s*fpc/sqrt(n)
and
fpc = sqrt[(N-n)/(N-1)]
then
fpc = sqrt((5000-50)/(5000-1)) = 0.995086951
Thus,
SE = 144*0.995086951/sqrt(50) = 20.26462265 [ANSWER]
**********************
c)
As
SE = s*fpc/sqrt(n)
and
fpc = sqrt[(N-n)/(N-1)]
then
fpc = sqrt((10000-50)/(10000-1)) = 0.997546746
Thus,
SE = 144*0.997546746/sqrt(50) = 20.31471558 [ANSWER]
********************
2.
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    -25      
 x2 = upper bound =    25      
 u = mean =    0      
           
 s = standard deviation =    20.11353468      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.242944137      
 z2 = upper z score = (x2 - u) / s =    1.242944137      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.10694421      
 P(z < z2) =    0.89305579      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.78611158   [ANSWER]
********************
b)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    -25      
 x2 = upper bound =    25      
 u = mean =    0      
           
 s = standard deviation =    20.26462265      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.233677055      
 z2 = upper z score = (x2 - u) / s =    1.233677055      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.108661634      
 P(z < z2) =    0.891338366      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.782676733   [ANSWER]
************************
c)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    -25      
 x2 = upper bound =    25      
 u = mean =    0      
           
 s = standard deviation =    20.31471558      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.230635      
 z2 = upper z score = (x2 - u) / s =    1.230635      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.109229704      
 P(z < z2) =    0.890770296      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.781540591   [ANSWER]  
   
   



