A simple random sample of 30 items was selected The sample m
A simple random sample of 30 items was selected. The sample mean it was 20 and the population standard deviation is known to be 4. What is a 99% confidence interval for the population mean?
 A simple random sample of 30 items was selected. The sample mean it was 20 and the population standard deviation is known to be 4. What is a 99% confidence interval for the population mean?
 A simple random sample of 30 items was selected. The sample mean it was 20 and the population standard deviation is known to be 4. What is a 99% confidence interval for the population mean?
Solution
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    20          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    4          
 n = sample size =    30          
               
 Thus,              
               
 Lower bound =    18.11888025          
 Upper bound =    21.88111975          
               
 Thus, the confidence interval is              
               
 (   18.11888025   ,   21.88111975   ) [ANSWER]

