To estimate the proportion of Democrats in a large city a ra
To estimate the proportion of Democrats in a large city, a random sample of 500 voters was taken: 260 were found to be Democrats.
Determine a 95% confidence Interval for the true proportion of Democrats:
Can we be 95% confident that at least half the city workers are Democrats?
if we had wanted a 95%confidence interval that was no wider than 0.05, how big should our sample size be?
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.52          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.022342784          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.476208948          
 upper bound = p^ + z(alpha/2) * sp =    0.563791052          
               
 Thus, the confidence interval is              
               
 (   0.476208948   ,   0.563791052   ) [ANSWER]
*******************
b)
No, because not the whole interval is above 0.50.
***************************
c)
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.025  
        
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 E =    0.025  
 p =    0.52  
       
 Thus,      
       
 n =    1534.124995  
       
 Rounding up,      
       
 n =    1535   [ANSWER]


