Suppose a random variable X follows the binomial distributio
Suppose a random variable X follows the binomial distribution with N=75 and p=0.05
c) How well you believe that the Pisson approximates the binomial result? Would the agreement have been better or worse had the original value for p equalled 0.1?
Solution
a)
Note that P(between x1 and x2) = P(at most x2) - P(at most x1 - 1)          
           
 Here,          
           
 x1 =    5      
 x2 =    7      
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    75      
 p = the probability of a success =    0.05      
           
 Then          
           
 P(at most    4   ) =    0.678851637
 P(at most    7   ) =    0.966371999
           
 Thus,          
           
 P(between x1 and x2) =    0.287520362   [ANSWER]
b)
Note that P(between x1 and x2) = P(at most x2) - P(at most x1 - 1)          
           
 Here,          
           
 x1 =    5      
 x2 =    7      
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    3.75      
           
           
 Then          
           
 P(at most    4   ) =    0.677547636
 P(at most    7   ) =    0.962378658
           
 Thus,          
           
 P(between x1 and x2) =    0.284831021   [ANSWER]
***************************
c)
Yes, I think it approximates the binomial result, as the difference is only around 0.003. It will become worse if p = 0.1, as Poisson approximation is better as p becomes smaller.

