Find the exact value of each of the following under the give
Solution
given
tana =-12/5 , pi/2< a<pi
tana=opposite side/adjacent side
hypotenuse2=opposite side2+ adjacent side2
hypotenuse2=122+ 52
hypotenuse=13
cosa=adjacent side/hypotenuse
cosa=-5/13
sina=opposite side/hypotenuse
sina=12/13
given cosb=3/2 ,0<b<pi/2
cosb=adjacent side/hypotenuse
hypotenuse2=opposite side2+ adjacent side2
22=opposite side2+ 32
4=opposite side2+ 3
opposite side2 =1
opposite side =1
sinb=opposite side/hypotenuse
sinb=1/2
tanb=opposite side/adjacent side
tanb=1/3
so sina=12/13,sinb=1/2,cosa=-5/13,cosb=3 /2,tana =-12/5,tanb=1/3
a)sin(a+b)=sinacosb +cosasinb
sin(a+b)=((12/13)(3 /2))+((-5/13)(1/2))
sin(a+b)=(123 -5)/26
b)cos(a+b)=cosacosb -sinasinb
cos(a+b)=((-5/13)(3 /2))-((12/13)(1/2))
cos(a+b)=-(53 +12)/26
c)
sin(a-b)=sinacosb -cosasinb
sin(a-b)=((12/13)(3 /2))-((-5/13)(1/2))
sin(a-b)=(123 +5)/26
cos(a-b)=cosacosb +sinasinb
cos(a-b)=((-5/13)(3 /2))+((12/13)(1/2))
cos(a-b)=(-53 +12)/26
d)tan(a-b)=sin(a-b)/cos(a-b)
tan(a-b)=[(123 +5)/26]/[(-53 +12)/26]
tan(a-b)=(123 +5)/(-53 +12)

