In a University exam with a large number of candidates the r
In a University exam with a large number of candidates, the results in a
 certain subject are scaled so that the marks will be normally distributed
 with mean 100 and standard deviation 20. Students in the top 15% of
 the marks are awarded an A-grade; a B-grade is awarded to those in
 the next 15% of the marks and a Pass is awarded to the top 80% of the
 grades.
 Determine the cut-o marks for an A-grade a B-grade and a Pass.
Solution
a)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.85      
           
 Then, using table or technology,          
           
 z =    1.036433389      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    100      
 z = the critical z score =    1.036433389      
 s = standard deviation =    20      
           
 Then          
           
 x = critical value =    120.7286678   [ANSWER, CUT OFF A GRADE]
**********************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.7      
           
 Then, using table or technology,          
           
 z =    0.524400513      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    100      
 z = the critical z score =    0.524400513      
 s = standard deviation =    20      
           
 Then          
           
 x = critical value =    110.4880103   [ANSWER, CUT OFF B GRADE]
***************************
c)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.2      
           
 Then, using table or technology,          
           
 z =    -0.841621234      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    100      
 z = the critical z score =    -0.841621234      
 s = standard deviation =    20      
           
 Then          
           
 x = critical value =    83.16757533   [ANSWER, CUT OFF OF PASSING]  
   
   


