Customers arrive at a bakery at an average rate of 10 custom
Customers arrive at a bakery at an average rate of 10 customers per hour. What is the probability that less than 5 customers will arrive in the next hour? Assume Poisson arrivals.
Customers arrive at a bakery at an average rate of 10 customers per hour. What is the probability that exactly 20 customers will arrive in the next 2 hours? Arrivals are Poisson.
Solution
a)
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    10      
 p = the probability of a success =    0      
 x = our critical value of successes =    5      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   4   ) =    0.029252688
           
 Which is also          
           
 P(fewer than   5   ) =    0.029252688 [ANSWER]
*****************
b)
The mean number of customers in 2 hrs is 10*2 = 20 customers.
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes =    20      
           
 x = the number of successes =    20      
           
 Thus, the probability is          
           
 P (    20   ) =    0.088835317 [ANSWER]

