0 At a small metal fabrication company steel rods of a parti
0 At a small metal fabrication company, steel rods of a particular type cut to length have lengths with standard deviation 0.005 in. In an effort to determine the mean length produced using the current setup of the jig, a sample of rods is to be taken and their lengths measured, with the intention of using the value of X-bar as an estimate of µ. Approximate the probabilities that X-bar is within .0005 in. of µ for samples of size n = 50, 100 and 400
N= 50 P=?
N=100 P=?
N=400 P=?
Solution
The mean difference of the sampling distirbution to the mean is 0.
a)
N = 50:
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    -0.0005      
 x2 = upper bound =    0.0005      
 u = mean =    0      
 n = sample size =    50      
 s = standard deviation =    0.005      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.707106781      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.707106781      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.239750061      
 P(z < z2) =    0.760249939      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.520499878   [answer]
************
b)
N = 100:
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    -0.0005      
 x2 = upper bound =    0.0005      
 u = mean =    0      
 n = sample size =    100      
 s = standard deviation =    0.005      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.158655254      
 P(z < z2) =    0.841344746      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.682689492   [answer]
****************
c)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    -0.0005      
 x2 = upper bound =    0.0005      
 u = mean =    0      
 n = sample size =    400      
 s = standard deviation =    0.005      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -2      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.022750132      
 P(z < z2) =    0.977249868      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.954499736   [answer]


