Show that arg z1 arg z2 arg z1z2 thus Express the following
     Show that arg z_1 + arg z_2  arg z_1z_2, thus  Express the following in a + ib form.  E^1pi/2.  4e^-i pi/2.  8e^i7 pi/3.  -2e^i 5 pi/6.  2ie^-I 3 pi/4.  6e^I 2 pi/3 e^i pi.  E^2 e^i pi.  e^I pi/4 - i pi.   
  
  Solution
Phasor form of complex number:
Z=|z| ( Cos + Sin) =|z| e
subset (b) = 4e -/2
Comparing this we get, |z|=4 and =-/2
so, It can be written in the form as follows:
z= 4 ( Cos(-/2) + i Sin(-/2) ) { Cos(-/2) = 0 ; Sin(-/2)= -1 }
z= 4 ( 0 - i ) = 0-4i ; a=0 , b=-4
subset (d) = -2 e i5/6
z= -2 ( Cos(5/6) + i Sin(5/6) ) { Cos(5/6) = -3/2 ; Sin(5/6)=1/2 }
z= -2 ( -3/2 + i 1/2 )
z= 3 + i ; a=3 , b=1

