A recent study focused on the number of times men and women
A recent study focused on the number of times men and women send a Twitter message in a day. The information is summarized below. At the 0.01 significance level, is there a difference in the mean number of times men and women send a Twitter message in a day? You may assume the population standard deviations are not the same. (Ugly df = 37 if needed.)
| Sample Size | Sample Mean | Sample Standard Deviation | |
| Men | 25 | 22 | 5 | 
| Women | 30 | 18 | 10 | 
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   =   0  
 Ha:   u1 - u2   =/   0  
 At level of significance =    0.01          
 As we can see, this is a    2   tailed test.      
 Calculating the means of each group,              
               
 X1 =    22          
 X2 =    18          
               
 Calculating the standard deviations of each group,              
               
 s1 =    5          
 s2 =    10          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    25          
 n2 = sample size of group 2 =    30          
 Thus, df = n1 + n2 - 2 =    53          
 Also, sD =    2.081665999          
               
 Thus, the t statistic will be              
               
 t = [X1 - X2 - uD]/sD =    1.921537846          
               
 where uD = hypothesized difference =    0          
               
 Now, the critical value for t is              
               
 tcrit =    2.715408722          
               
 Thus, comparing t and tcrit, we decide to   WE FAIL TO REJECT THE NULL HYPOTHESIS.          
               
 Also, using p values,              
               
 p =    0.060048416          
 ***************************************************
 Thus, it is OPTION A: Fail to reject the null hypothesis and conclude the means are the same. [ANSWER, OPTION A]

