The National Center for Education Statistics reported that 4
The National Center for Education Statistics reported that 47% of college students work to pay for tuition and living expenses. Assume that a sample of 450 college students was used in the study. a. Provide a 95% confidence interval for the population proportion of college students who work to pay for tuition and living expenses (to 4 decimals).
Provide a 99% confidence interval for the population proportion of college students who work to pay for tuition and living expenses (to 4 decimals).
Solution
A)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.47          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.023527761          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.046113565          
 lower bound = p^ - z(alpha/2) * sp =   0.423886435          
 upper bound = p^ + z(alpha/2) * sp =    0.516113565          
               
 Thus, the confidence interval is              
               
 (   0.423886435   ,   0.516113565   ) [ANSWER]
***************
b)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.47          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.023527761          
               
 Now, for the critical z,              
 alpha/2 =   0.005          
 Thus, z(alpha/2) =    2.575829304          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.060603497          
 lower bound = p^ - z(alpha/2) * sp =   0.409396503          
 upper bound = p^ + z(alpha/2) * sp =    0.530603497          
               
 Thus, the confidence interval is              
               
 (   0.409396503   ,   0.530603497   ) [ANSWER]

