An An IQ test was developed for children to have a mean of m
Solution
Normal Distribution
 Mean ( u ) =75
 Standard Deviation ( sd )=11
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
1)
 P(X < 105) = (105-75)/11
 = 30/11= 2.7273
 = P ( Z <2.7273) From Standard Normal Table
 = 0.9968                  
P(X > = 105) = (1 - P(X < 105)
 = 1 - 0.9968 = 0.0032                  
2)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 55) = (55-75)/11
 = -20/11 = -1.8182
 = P ( Z <-1.8182) From Standard Normal Table
 = 0.03452
 P(X < 100) = (100-75)/11
 = 25/11 = 2.2727
 = P ( Z <2.2727) From Standard Normal Table
 = 0.98848
 P(55 < X < 100) = 0.98848-0.03452 = 0.9540
4)
 P(X < 80) = (80-75)/11/ Sqrt ( 6 )
 = 5/4.4907= 1.1134
 = P ( Z <1.1134) From Standard NOrmal Table
 = 0.8672                              
 P(X > = 80) = 1 - P(X < 80)
 = 1 - 0.8672 = 0.1335              
5)
 Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
 Z a/2 at 0.1 is = 1.645
 Samle Proportion = 0.72
 ME = 0.05
 n = ( 1.645 / 0.05 )^2 * 0.72*0.28
 = 218.214 ~ 219
                   

