Calculate the approximate size required for each of the foll
Calculate the approximate size required for each of the following at 95 percent confidence:
Standard deviation = 10, (ME) = 0.5, two tail
Standard deviation = 10, (ME) = 0.5, one tail
Standard deviation = 10, (ME) = 1.5, two tail
Standard deviation = 10, (ME) = 1.5, one tail
Standard deviation = 35, (ME) = 5, two tail
Standard deviation = 35, (ME) = 5, one tail
Standard deviation = $3,200, (ME) = 400, two tail
Standard deviation = $3,200, (ME) = 400, one tail
Solution
a)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    10  
 E = margin of error =    0.5  
       
 Thus,      
       
 n =    1536.583528  
       
 Rounding up,      
       
 n =    1537   [ANSWER]
************
b)
Note that      
       
 n = z(alpha)^2 s^2 / E^2      
       
 where      
       
 alpha = (1 - confidence level) =    0.05  
       
 Using a table/technology,      
       
 z(alpha) =    1.644853627  
       
 Also,      
       
 s = sample standard deviation =    10  
 E = margin of error =    0.5  
       
 Thus,      
       
 n =    1082.217382  
       
 Rounding up,      
       
 n =    1083   [ANSWER]
*****************
c)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.025  
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 s = sample standard deviation =    10  
 E = margin of error =    1.5  
       
 Thus,      
       
 n =    170.7315031  
       
 Rounding up,      
       
 n =    171   [ANSWER]
*********************
D)
Note that      
       
 n = z(alpha)^2 s^2 / E^2      
       
 where      
       
 alpha = (1 - confidence level) =    0.05  
       
 Using a table/technology,      
       
 z(alpha) =    1.644853627  
       
 Also,      
       
 s = sample standard deviation =    10  
 E = margin of error =    1.5  
       
 Thus,      
       
 n =    120.2463757  
       
 Rounding up,      
       
 n =    121   [answer]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!



