find the general solution of the following equations 1 x2y2x
find the general solution of the following equations:
1. x2y\'\'+2xy\'-12y=0
2. x2y\'\'+xy\'=0
3.x2y\'\'+xy\'-y=0
Solution
1. x2y\'\'+2xy\'-12y=0
Let y = x^r be the soltuion of the equation:
y\'= rx^r-1
y\"= r(r-1)x^(r-2)
So, on substitution we get :
x^2r(r-1)x^r-2 +2xr*x^r-1 -12x^r =0
x^r ( r(r-1) + 2r -12) =0
Solve r(r-1) +2r -12 =0
r^2 +r-12 =0
r^2 +4r -3r -12 =0
r( r+4) -3(r +4) =0
(r-3)(r+4) =0
r = 3, -4
GenralSolution : y= c1e^^3x + c2e^-4x
2. x^2y\'\'+xy\'=0
Let y = x^r be a solution
So, y\'= rx^r-1 ; y\" = r(r-1)x^(r-2)
substituting the above:
x^2r(r-1)x^(r-2) + x*rx^(r-1) =0
x^r( r(r-1) + r ) =0
Solve equation : r(r-1) +r =0
r^2 =0 ---> r=0
y = C1
3. x2y\'\'+xy\'-y=0
Let y = x^r be the soltuion of the equation:
y\'= rx^r-1
y\"= r(r-1)x^(r-2)
So, on substitution we get :
x^2 r(r-1)x^(r-2) +xrx^(r-1) - x^r =0
x^r { r(r- 1) +r -1 ) =0
r^2 -r +r -1 =0
solve th equation : r^2 -1 =0
r =1, r=-1
So, general solution : y = c1e^x + c2e^-x

