Let M1 1 1 1 0 M2 1 1 1 0M3 1 1 1 0 M4 1 1 1 0 Let U sp
Solution
a) Consider M1, M2, M3
To find dim (U) we check whether the 3 are linearly independent,.
If possible let M1 = aM2+bM3
Then equate corresponding elements
1 =a+b
1=-a+b
Solving, b =1 and a =0
Also 1 =a-b = 0 which is a contradiction
So M1, M2 and M3 are linearly independent.
Dim U = dim span (M1,M2,M3) = 3 as 3 vectors are linearly independent.
------------------------------------------------------------------------------------------
b)W= span of M1, M2, M3, M4
We already proved M1, M2 and M3 are linearly independent
]Now checking for M4
Let M4 = aM1+bM2+cM3
Equate corresponding elements
-1=a+b+c: 1=a-b+c; -1 = a+b-c
0=0
There are 3 equations and 3 variables
Solving we have M4 = -M2 since a =c=0 and b =-1
Hence M1, M2,M3 and M4 are not linearly independent.
So dim W = dim span M1, M2, M3 = 3
![Let M_1 = [1 1 1 0], M_2 = [1 1 -1 0],M_3 = [1 -1 1 0], M_4 = [-1 -1 1 0] Let U = span{M_1, M_2, M_3}· What is dim(U)? Let W = span {M_1, M_2,M_3, M_4}. What i Let M_1 = [1 1 1 0], M_2 = [1 1 -1 0],M_3 = [1 -1 1 0], M_4 = [-1 -1 1 0] Let U = span{M_1, M_2, M_3}· What is dim(U)? Let W = span {M_1, M_2,M_3, M_4}. What i](/WebImages/30/let-m1-1-1-1-0-m2-1-1-1-0m3-1-1-1-0-m4-1-1-1-0-let-u-sp-1086546-1761571425-0.webp)