If cot u 45 pi Solutioncot u 45 tan u 54 perpendicular 5
     If cot u = 4/5, pi  
  
  Solution
cot u = 4/5
tan u = 5/4
perpendicular = 5
base = 4
hypotenuse = sqrt 41
sin u = - 5 / sqrt 41
cos u = - 4 / sqrt 41
sin v = -5/13
perpendicular = 5
hypotenuse = 13
base = 12
cos v = 12/13
sin ( u + v ) = sin u cos v + cos u sin v = (-5/sqrt 41 )*(12/13) + ( -4/sqrt 41)(-5/13)
a) sin ( u+v ) = -60 / 13 sqrt 41 + 20 / 13 sqrt 41 = - 40 / 13 sqrt 41 = -40 sqrt 41 / 533
cos ( u+ v) = cos u cos v - sin u sin v = (- 4 / sqrt 41 )*(12/13) - ( - 5 / sqrt 41 )* (-5/13 )
b) cos ( u+v) = -48 / 13 sqrt 41 - 25 / 13 sqrt 41 = - 73 / 13 sqrt 41 = -73 sqrt 41 / 533
c) sin(u+v) and cos (u+v) are negative so (u+v) lies in 3rd quadrant

