Find the inverse Laplace transform ft of the function Fs 10
Solution
Given that
F(s) = ( 10s + 3 ) / ( 25 - s2 )
Take
( 10s + 3 ) / ( 25 - s2 ) into partial fractions
( 10s + 3 ) / ( 25 - s2 ) = ( 10s + 3 ) / ( 5 + s ) ( 5 - s )
= A / ( 5 + s ) + B / ( 5 - s )
= [ A(5 - s ) + B( 5 + s ) ] / [ ( 5 + s ) ( 5 - s ) ]
( 10s + 3 ) / ( 25 - s2 ) = [ 5A - As + 5B + Bs ] / [ ( 5 + s ) ( 5 - s ) ]
10s + 3 = 5A - As + 5B + Bs
10s + 3 = s( -A + B ) + 5A + 5B
Equating the coefficients
-A + B = 10
5A + 5B = 3
On solving these tw equations
A = -47/10 , B = 53/10
Hence,
( 10s + 3 ) / ( 25 - s2 ) = A / ( 5 + s ) + B / ( 5 - s )
( 10s + 3 ) / ( 25 - s2 ) = (-47/10)/(5 + s) + (53/10) / (5 - s)
= -1 [ (47/10) /(s + 5) + (53/10) / (s - 5) ]
= (-47/10) ( 1/(s+5) ) - (53/10) ( 1/ (s - 5 ) )
f(t) = L-1 { ( 10s + 3 ) / ( 25 - s2 ) } = L-1 { (-47/10) (1/(s+5)) - (53/10) ( 1/ (s - 5 ) ) }
= L-1 { (-47/10) (1/(s+5)) } - L-1 { (53/10) ( 1/ (s - 5 ) ) }
= (-47/10) L-1(1/(s+5)) - (53/10) L-1( 1/ (s - 5 ) )
= (-47/10) .e-5t + (-53/10)e5t [since L-1( 1/s-a) = eat]
Therefore,
f(t) = (-47/10)e-5t + (-53/10)e5t
