Let fx y 3xx32y2y4 on the domain D x y 5

Let f(x, y) = 3x-x^3-2y^2+y^4 on the domain D = {(x, y)| -5<=x<= 5, -2<=y <=2}. Find all critical points and use the second derivative test to determine whether they are absolute, local maxima, minima or neither. Please show step by step.

Solution

f(x,y) = 3 - 3x2 = 0

x = ±1

x = 1 maxima

x = -1 minima

partial diff wrt y : 4y3 - -4y = 0

y = 0 , ±1

y = 0 maxima

y = 1 minima

y = -1 minima

(1,0)    =   2 local maxima

(-1,1)   = -1 local minima

(-1,-1) = -1 local minima

(1, 1) , (1 , -1) , (-1 , 0) neither !!!

global maxima (-5 , 2)

global minima (5 , -2)   

end points ~~~

Let f(x, y) = 3x-x^3-2y^2+y^4 on the domain D = {(x, y)| -5<=x<= 5, -2<=y <=2}. Find all critical points and use the second derivative test to deter

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site