It is crucial that the variance of a production process be l
It is crucial that the variance of a production process be less than or equal to 28. A sample of 30 is taken. The sample variance equaled 29.
a) Construct a 90% confidence interval for the population variance
b) Construct a 90% confidence interval for the population standard deviation
c) test at 10% level of significance that whether the variance of the production process exceeds its standard (use the critical value approach)
Solution
a)
As              
               
 df = n - 1 =    29          
 alpha = (1 - confidence level)/2 =    0.05          
               
 Then the critical values for chi^2 are              
               
 chi^2(alpha/2) =    42.5569678          
 chi^2(alpha/2) =    17.70836618          
               
 Thus, as              
               
 lower bound = (n - 1) s^2 / chi^2(alpha/2) =    573.090642          
 upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    1377.258622          
               
 Thus, the confidence interval for the variance is              
               
 (   573.090642   ,   1377.258622   ) [ANSWER, PART A]
*************
 b)
               
 Also, for the standard deviation, getting the square root of the bounds,              
               
 (   23.93931164   ,   37.11143519   ) [ANSWER]
***************
c)
Formulating the null and alternative hypotheses,              
               
 Ho:   sigma   <=   28  
 Ha:    sigma   >   28  
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical chi^2, as alpha =    0.1   ,      
 alpha =    0.1          
 df = N - 1 =    29          
 chi^2 (crit) =    39.08746977        
               
 Getting the test statistic, as              
 s = sample standard deviation =    29          
 sigmao = hypothesized standard deviation =    28          
 n = sample size =    30          
               
               
 Thus, chi^2 = (N - 1)(s/sigmao)^2 =    31.10841837          
 As chi^2 < chi^2(crit), then we FAIL TO REJECT THE NULL HYPOTHESIS.              
There is no significant evidence that the production process exceeds its standard. [CONCLUSION]


