A recent report in USA Today indicated a typical family of f
A recent report in USA Today indicated a typical family of four spends $490 a month on food. Assume the distribution of food expenditures for a family of four follows the normal distributio, with a standard deviation of $90 per month.
 a.     What percent of the families spend more than $30 but less than $490 per month on food?
 b.     What Percent of the families spend less than $430 per month on food?
 c.     What percent spend between $430 and $600 per month on food?
 d.     What percent spend between $500 and $600 per month on food?
For a. I have
z=(30-490)/90
z= -5.11
but I don\'t know what to do with this z-value, or how to proceed to solve the rest of the problems. Thank you in advance for any assistance.
Solution
a.
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    30      
 x2 = upper bound =    490      
 u = mean =    490      
           
 s = standard deviation =    90      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -5.111111111      
 z2 = upper z score = (x2 - u) / s =    0      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    1.60135E-07      
 P(z < z2) =    0.5      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.49999984 = 50.00%      
       
****************************
b.
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    430      
 u = mean =    490      
           
 s = standard deviation =    90      
           
 Thus,          
           
 z = (x - u) / s =    -0.666666667      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   -0.666666667   ) =    0.252492538 = 25.249%
***************************
c.
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    430      
 x2 = upper bound =    600      
 u = mean =    490      
           
 s = standard deviation =    90      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.666666667      
 z2 = upper z score = (x2 - u) / s =    1.222222222      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.252492538      
 P(z < z2) =    0.889188199      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.636695661 = 63.67%
**********************************
d.
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    500      
 x2 = upper bound =    600      
 u = mean =    490      
           
 s = standard deviation =    90      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0.111111111      
 z2 = upper z score = (x2 - u) / s =    1.222222222      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.544235881      
 P(z < z2) =    0.889188199      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.344952318   = 34.495%  
******************************************


