Determine whether the given matrices are diagonalizable 1 4
Determine whether the given matrices are diagonalizable. [1 4 1 -2] [1 1 -2 4 0 4 1 -1 4]
Solution
a) characteristic polynomial:
eigenvalues = -3 and 2
eigenvectors
for Eigenvalue -3:
[ -1 ; 1 ]
for Eigenvalue 2:
[ 4 ; 1 ]
hence it is diagonalizable
b)
Characteristic Polynomial:
-x^3 + 5x^2 - 6x
Real Eigenvalues: { 0 ; 2 ; 3 }
Eigenvectors:
for Eigenvalue 0:
[ -1 ; 3 ; 1 ]
for Eigenvalue 2:
[ 0 ; 2 ; 1 ]
for Eigenvalue 3:
[ -1 ; 0 ; 1 ]
diagonalizable
![Determine whether the given matrices are diagonalizable. [1 4 1 -2] [1 1 -2 4 0 4 1 -1 4]Solutiona) characteristic polynomial: eigenvalues = -3 and 2 eigenvect Determine whether the given matrices are diagonalizable. [1 4 1 -2] [1 1 -2 4 0 4 1 -1 4]Solutiona) characteristic polynomial: eigenvalues = -3 and 2 eigenvect](/WebImages/31/determine-whether-the-given-matrices-are-diagonalizable-1-4-1087343-1761571948-0.webp)