Simplify the following functional expression using Boolean a
Simplify the following functional expression using Boolean algebra. (x + y)\'(x\' + y\')\'
Solution
given expression is = (x+y)\'(x\'+y\')\'
=(x+y)\'((x\')\'.(y\')\') [ since formula demorgans law (x+y)\'=x\'.y\']
=(x+y)\'(xy) [ since formula (x\')\'=x; (y\')\'=y]
=(x\'.y\')(xy) [since demorgans law (x+y)\'=x\'.y\']
=x\'.y\' xy [ demorgans law(x+y)\'=x\'.y\']
=(x.x\')(y\'.y)
=(0).(0) [ since formula x.x\'=0 ; y.y\'=0]
=0
Therefore (X+Y)\'(X\'+Y\')\'=0
