How should we redifine function Fr 6r 1 1r 1 so its conti
How should we redifine function F(r) = 6^r + 1 -1/r + 1 so it\'s continuous at -1?
Solution
f(r)=[br+1 -1]/(r+1)
limr->-1f(r)
=limr->-1 ([br+1 -1]/(r+1))
we get 0/0 form, so apply lhospitals rule differentiate numerator and denominator with respect to r
=limr->-1 ([br+1ln(b) -0]/(1+0))
=limr->-1 (br+1ln(b))
=(b-1+1ln(b))
=(b0ln(b))
=1*ln(b)
=ln(b)
function will be continous at r =-1 if function is defined as f(r)=ln(b) when r =-1
![How should we redifine function F(r) = 6^r + 1 -1/r + 1 so it\'s continuous at -1?Solutionf(r)=[br+1 -1]/(r+1) limr->-1f(r) =limr->-1 ([br+1 -1]/(r+1)) w How should we redifine function F(r) = 6^r + 1 -1/r + 1 so it\'s continuous at -1?Solutionf(r)=[br+1 -1]/(r+1) limr->-1f(r) =limr->-1 ([br+1 -1]/(r+1)) w](/WebImages/31/how-should-we-redifine-function-fr-6r-1-1r-1-so-its-conti-1087459-1761572034-0.webp)