How should we redifine function Fr 6r 1 1r 1 so its conti

How should we redifine function F(r) = 6^r + 1 -1/r + 1 so it\'s continuous at -1?

Solution

f(r)=[br+1 -1]/(r+1)

limr->-1f(r)

=limr->-1 ([br+1 -1]/(r+1))

we get 0/0 form, so apply lhospitals rule differentiate numerator and denominator with respect to r

=limr->-1 ([br+1ln(b) -0]/(1+0))

=limr->-1 (br+1ln(b))

=(b-1+1ln(b))

=(b0ln(b))

=1*ln(b)

=ln(b)

function will be continous at r =-1 if function is defined as f(r)=ln(b) when r =-1

 How should we redifine function F(r) = 6^r + 1 -1/r + 1 so it\'s continuous at -1?Solutionf(r)=[br+1 -1]/(r+1) limr->-1f(r) =limr->-1 ([br+1 -1]/(r+1)) w

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site