Disks A and B have a mass of 16 kg and 10 kg respectively If
Solution
Angle of line of impact = atan (4/3) = 53.13 deg
Tangential velocity of A, Vta = 10* sin 53.13 = 8 m/s
Normal velocity of A, Vna = 10* cos 53.13 = 6 m/s
Tangential velocity of B, Vtb = -8* sin 53.13 = -6.4 m/s
Normal velocity of B, Vnb = -8* cos 53.13 = -4.8 m/s
By momentum conservation in tangential direction,
ma*Vta = ma*Vta\' and mb*Vtb = mb*Vtb\'
Thus, Vta\' = 8 m/s, Vtb\' = -6.4 m/s
By momentum conservation in normal direction,
ma*Vna + mb*Vnb = ma*Vna\' + mb+Vnb\'
16*6 + 10*(-4.8) = 16*Vna\' + 10*Vnb\'
16*Vna\' + 10*Vnb\' = 48.........eqn1
Coeff of restitution = (Vnb\' - Vna\') / (Vna - Vnb)
0.6 = (Vnb\' - Vna\') / (6 - (-4.8))
(Vnb\' - Vna\') = 6.48.............eqn2
Solving eqns 1 and 2 we get,
Vna\' = -0.646 m/s and Vnb\' = 5.834 m/s
Thus, Va\' = sqrt (Vna\'2 + Vta\'2)
Va\' = sqrt (0.6462 + 82)
Va\' = 8.026 m/s
Vb\' = sqrt (Vnb\'2 + Vtb\'2)
Vb\' = sqrt (5.8342 + 6.42)
Vb\' = 8.66 m/s
