The number of messages that arrive at a Web site is a Poisso
Solution
THE NUMBER OF MESAGES THAT ARRIVE...
a)
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes =    7      
           
 x = the number of successes =    5      
           
 Thus, the probability is          
           
 P (    5   ) =    0.127716668 [answer]
******************
b)
In 1.5 hours, the mean is 7*1.5 = 10.5.
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes =    10.5      
           
 x = the number of successes =    10      
           
 Thus, the probability is          
           
 P (    10   ) =    0.123605529 [answer]
*******************
c)
In 1/2 hour, the mean is 7*(1/2) = 3.5.
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    3.5      
 p = the probability of a success =    0      
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   1   ) =    0.135888225
           
 Which is also          
           
 P(fewer than   2   ) =    0.135888225 [answer]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


