Use Taylor series expansion to determine the truncation erro
Solution
solution;
1)1 D unsteady diffusion equation is given as
e=density,u=velocity,T= diffusing temperature
d/dx(euT)=d/dx(D*T)
D=conductance of surface
by applying finite difference approximation we get
k=e*u*t
m=DT
hence equation becomes
Ki+1n -kin/dx=m i+1n -min/dx
on applying taylor series we get
where by applying upwind scheme means considering higher order derivatives we get
[(Kin +dx(kx)+((dx)^2/2)(kxx)+((dx)^3/6)kxxx+-----)-kin]/dx=((min +dx(mx)+((dx)^2/2)(mxx)+((dx)^3/6)mxxx+-----)-min)/dx
on solving we get on left side is diffusionequation and on right side is truncation error due to considering higher order derivatives that is upwind scheme
kx-mx=[(((dx)^2/2)(kxx)+((dx)^3/6)kxxx+-----)-(((dx)^2/2)(mxx)+((dx)^3/6)mxxx+-----)]
4)hence truncation error is
error=kx-mx=[(((dx)^2/2)(kxx)+((dx)^3/6)kxxx+-----)-(((dx)^2/2)(mxx)+((dx)^3/6)mxxx+-----)]
![Use Taylor series expansion to determine the truncation error associated with the up-wind scheme: (rho u)_theta T_theta = max[(rho u)_theta, 0]T_p - max[(rho u  Use Taylor series expansion to determine the truncation error associated with the up-wind scheme: (rho u)_theta T_theta = max[(rho u)_theta, 0]T_p - max[(rho u](/WebImages/31/use-taylor-series-expansion-to-determine-the-truncation-erro-1088319-1761572619-0.webp)
