14 children sample size were learning to ride twowheel bikes
14 children (sample size), were learning to ride two-wheel bikes. It was revealed that it takes them an average of 6 months (sample average) with a sample standard deviation of 3 months.
Construct a 90% confidence interval for the population mean length of time needed to learn how to ride two-wheel bikes.
(Population standard deviation is not known. For Margin of Error use t-value from attached Appendix Table for t-Distribution)
Solution
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    6          
 t(alpha/2) = critical t for the confidence interval =    1.770933396          
 s = sample standard deviation =    3          
 n = sample size =    14          
 df = n - 1 =    13          
 Thus,              
               
 Lower bound =    4.580094424          
 Upper bound =    7.419905576          
               
 Thus, the confidence interval is              
               
 (   4.580094424   ,   7.419905576   ) [ANSWER]

