Find the probabilities for a standard normal random variable
Find the probabilities for a standard normal random variable Z.
a.P(Z>2.5)
b.P(1.2<Z<2.2)
Solution
Normal Distribution
 Mean ( u ) =0
 Standard Deviation ( sd )=1
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X > 2.5) = (2.5-0)/1
 = 2.5/1 = 2.5
 = P ( Z >2.5) From Standard Normal Table
 = 0.0062                  
 b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 1.2) = (1.2-0)/1
 = 1.2/1 = 1.2
 = P ( Z <1.2) From Standard Normal Table
 = 0.88493
 P(X < 2.2) = (2.2-0)/1
 = 2.2/1 = 2.2
 = P ( Z <2.2) From Standard Normal Table
 = 0.9861
 P(1.2 < X < 2.2) = 0.9861-0.88493 = 0.1012                  

