Find the derivative of each function Choose 1 to work fx 2x
Find the derivative of each function ((Choose 1 to work!) f(x) = [(2x + 5) (x^3 - 2x)]^7 f(x) = (2x^2 + 1/3x + 1)^7
Solution
a) given f(x)=[(2x+5)(x2-2x)]7
differentiate with respect to x :
d/dx (f(x))n =n(f(x))n-1*f \'(x) , product rule:(uv)\'=u\'v +uv\'
f \'(x)=7[(2x+5)(x2-2x)]7-1[(2+0)(x2-2x)+(2x+5)(2x-2)]
f \'(x)=7[(2x+5)(x2-2x)]6[2x2-4x+ (2x+5)(2x-2)]
f \'(x)=7[(2x+5)(x2-2x)]6[2x2-4x+ 4x2+6x-10]
f \'(x)=7[(2x+5)(x2-2x)]6[6x2+2x-10]
f \'(x)=14[3x2+x-5][(2x+5)(x2-2x)]6
b)f(x)=[(2x2+1)/(3x+1)]7
differentiate with respect to x :
d/dx (f(x))n =n(f(x))n-1*f \'(x) , quotient rule:(u/v)\'=(u\'v -uv\')/v2
f \'(x)=7[(2x2+1)/(3x+1)]7-1[(4x+0)(3x+1) -(2x2+1)(3+0)]/(3x+1)2
f \'(x)=7[(2x2+1)/(3x+1)]6[12x2+4x -6x2-3]/(3x+1)2
f \'(x)=7[(2x2+1)/(3x+1)]6[6x2+4x -3]/(3x+1)2
f \'(x)=7[6x2+4x -3][(2x2+1)6/(3x+1)8]
![Find the derivative of each function ((Choose 1 to work!) f(x) = [(2x + 5) (x^3 - 2x)]^7 f(x) = (2x^2 + 1/3x + 1)^7Solutiona) given f(x)=[(2x+5)(x2-2x)]7 diffe Find the derivative of each function ((Choose 1 to work!) f(x) = [(2x + 5) (x^3 - 2x)]^7 f(x) = (2x^2 + 1/3x + 1)^7Solutiona) given f(x)=[(2x+5)(x2-2x)]7 diffe](/WebImages/31/find-the-derivative-of-each-function-choose-1-to-work-fx-2x-1089505-1761573440-0.webp)