Refrigerant R410a is contained in a cylinder with a leakproo
Solution
b)
From the spring data, we get that P = (1000 - 100) / (0.035 - 0.01) *(V - 0.01) + 100
P = 36000*(V - 0.01) + 100
When P2 = 600 kPa, we get 600 = 36000*(V2 - 0.01) + 100
V2 = 0.0239 m^3
c)
Work done = Integral P dV from V1 to V2
= Integral [36000*(V - 0.01) + 100] dV from V1 = 0.02 m^3 to V2 = 0.0239 m^3
= [18000*V^2 - 260*V] from V1 = 0.02 m^3 to V2 = 0.0239 m^3
= 18000*(0.0239^2 - 0.02^2) - 260*(0.0239 - 0.02)
= 2.068 kJ
d)
For R-410a at -30 deg C, we have v_f = 0.000781 m^3/kg, v_g = 0.0948 m^3/kg
We have volume of liquid = 0.01*0.02 = 0.0002 m^3
Volume of vapor = 0.02 - 0.0002 = 0.0198 m^3
Mass of liquid = 0.0002 / 0.000781 = 0.256 kg
Mass of vapor = 0.0198 / 0.0948 = 0.209 kg
Total mass = 0.256 + 0.209 = 0.465 kg
Quality x1 = 0.256 / 0.465 = 0.55
At -30 deg C and x1 = 0.55, we get u1 = 141 kJ/kg, v1 = 0.053 m^3/kg
m = V1/v1 = 0.02 / 0.053 = 0.377 kg
v2 = V2/m = 0.0239 / 0.377 = 0.0634 m^3/kg
At P2 = 600 kPa and v2 = 0.0634 m^3/kg, we get u2 = 317 kJ/kg
Q - W = m(u2 - u1)
Q - 2.068 = 0.377*(317 - 141)
Q = 68.42 kJ
At P2 = 600 kPa and v2 = 0.0634 m^3/kg, we get T2 = 74.6 deg C
