Calculate the probability of a Type II error for the followi
Calculate the probability of a Type II error for the
 following test of hypothesis, given that  = 203.
 H0:  = 200
 H1:   200
  = .05,  = 10, n = 100
Solution
Set Up Hypothesis
 Null, H0: U=200
 Alternate, H1: U!=200
 Critical Value
 The Value of |Z | at LOS 0.05% is 1.96
 Since test is two tailed,
 Reject Ho if Zo<-1.96 OR Zo>1.96
 Reject Ho if x-200/(10/Sqrt(100)<-1.96 OR x-200/(10/Sqrt(100)>1.96
 Reject Ho if x<-1.96+200 OR x>1.96+200
 Reject Ho if x<198.04 OR x>201.96
 Implies, don\'t reject if 0 if 198.04 < X < 201.96
 Suppose the true mean is 203.
 Probability of type II error,
 P(type II Error )=P(Don’t reject H0 | H1 is true)
                = P(198.04 < X < 201.96 | u = 203)
                = P ( 198.04 - 203/(10/Sqrt(100) < x-U/(s.d/Sqrt(n)) < 201.96-203/(10/Sqrt(100) )
                = P ( - 4.96 < x-U/(s.d/Sqrt(n)) < -1.04 )
                = P(- 4.96 < Z < -1.04 )
                = 0.1492

