Analyze x x x3 by sketching the vector field on the real l

Analyze: x = x - x^3 by sketching the vector field on the real, line, find all fixed points, classify their stability using both a graphical and analytical (i.e., linearization) argument. Sketch the graph of x(t) for different initial conditions (in the same figure). Show each line of the Matlab Code used to generate graphs.

Solution

import java.awt.*;
import java.applet.*;

public category Tank extends applications programme
purpose target;
   public int x, y, w, h;
   public int maxX=400,maxY=360,minX=0,minY=0;
   public int maxFire;   // the utmost quantity of shots allowed for the tank to fireside promptly
   public int gamma hydroxybutyrateShells;   // The max range of shells allowed to be pink-slipped
   public Boolean isMoving, isAlive, exploded;
   Graphics g;

   Tank()

   public Tank(int xpos, int ypos, Color c, int speed, int newDirection, int maxFire)

   public void move() else break;
       case EAST:   if( (x+tankWidth()+moveBy)>maxX) else break;
case SOUTH: if( (y+tankHeight()+moveBy)>maxY ) else break;
case WEST: if( (x-moveBy<minX) ) else break;
}
   }

   public void turn(int newDirection)

   public void turnAround()

   void explode()

   public void paint(Graphics gr)

       //polygon canon wheels
       int x11[] = ;
       int y11[] = ;

       int x12[] = ;
       int y12[] = ;

       int x13[] = x11;
       int y13[] = ;

       int x14[] = ;
       int y14[] = y12;

       int x1[][] = ;
       int y1[][] = ;

       //roundrect canon compartment
       int x2[] = ;
       int y2[] = ;

       //rect canon case
       int x3[] = ;
       int y3[] = ;
       int x3w[] = ;
       int y3h[] = ;

       //oval canon cap
       int x4[] = ;
       int y4[] = ;

       //canon
       int x5[] = ;
       int y5[] = ;
       int x5w[] = ;
       int y5h[] = ;

       int d = direction - 1;

       //draw wheels
       g.setColor(Color.black);
       g.fillPolygon(x1[d], y1[d] ,8);

       //draw compartment
       g.setColor(color);
       g.fillRoundRect(x2[d],y2[d],25,25,5,5);

       //draw canon
       g.setColor(Color.black);
       g.fillRect(x5[d],y5[d],x5w[d],y5h[d]);


       //draw canon case
       g.setColor(new Color(47,79,79));
       g.fillRect(x3[d],y3[d],x3w[d],y3h[d]);

       //draw canon cap      
       g.setColor(Color.black);
       g.fillOval(x4[d],y4[d],15,15);

   }

   int tankWidth()direction==3)return 35;
       else {return 40;
   }

   int tankHeight()come 35;
   }

}

 Analyze: x = x - x^3 by sketching the vector field on the real, line, find all fixed points, classify their stability using both a graphical and analytical (i.
 Analyze: x = x - x^3 by sketching the vector field on the real, line, find all fixed points, classify their stability using both a graphical and analytical (i.

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site