A personal shopper has built a business shopping for busy st
A personal shopper has built a business shopping for busy students and charges them a percentage of their purchases. Currently the shopper has 50 clients who spend an approximate normal mean if $200 with a standard deviation of $75 per week.
1) probability of 1 client spending more than $250 in a given week
2) probability 1 client will spend between $125 and $200 in a given week
3) probability that average spending across all 50 clients will exceed $210
4) What is the 10th percentile of average spending across all 50 clients
5) If the shopper charges clients 10% of their purchase amount, what is the probability the shopper will earn more than $1,100 in a week shopping for 50 clients?
Solution
1)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    250      
 u = mean =    200      
           
 s = standard deviation =    75      
           
 Thus,          
           
 z = (x - u) / s =    0.666666667      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.666666667   ) =    0.252492538 [answer]
*******************
2)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    125      
 x2 = upper bound =    200      
 u = mean =    200      
           
 s = standard deviation =    75      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1      
 z2 = upper z score = (x2 - u) / s =    0      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.158655254      
 P(z < z2) =    0.5      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.341344746   [ANSWER]
******************
3)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    210      
 u = mean =    200      
 n = sample size =    50      
 s = standard deviation =    75      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    0.942809042      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.942809042   ) =    0.172889293 [answer]
*********************
4)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.1      
           
 Then, using table or technology,          
           
 z =    -1.281551566      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    200      
 z = the critical z score =    -1.281551566      
 s = standard deviation =    75      
 n = sample size =    50      
 Then          
           
 x = critical value =    186.407093   [ANSWER]
******************
5)
This is just like asking for the probability that the sum of those shopped is $1100/0.1 = $11000.
Thus, like asking that the mean of the 50 shoppers is $11000/50 = $220.
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    220      
 u = mean =    200      
 n = sample size =    50      
 s = standard deviation =    75      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    1.885618083      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.885618083   ) =    0.029673219 [ANSWER]


