For the given cost function Cx 62500 400x x2 find The pro

For the given cost function C(x) = 62500 + 400x + x^2 find: The production level that will minimize the average cost The minimal average cost

Solution

given cost C(x)=62500+400x +x2

average cost AC(x) =(C(x))/x

average cost AC(x) =(62500+400x +x2)/x

average cost AC(x) =(62500/x)+400 +x

a)AC\'(x)=(-62500/x2)+0 +1

AC\'(x)=(-62500/x2) +1

AC\'\'(x)=(125000/x3)

for minimum average cost AC\'(x)=0,AC\'\'(x)>0

(-62500/x2) +1=0

(62500/x2) =1

x2=62500

x =250

AC\'\'(250)=(125000/2503)>0

production level that will minimise the average cost =250

b) minimal average cost AC(250) =(62500/250)+400 +250

minimal average cost =250+400 +250

minimal average cost =900

 For the given cost function C(x) = 62500 + 400x + x^2 find: The production level that will minimize the average cost The minimal average cost Solutiongiven cos

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site