For the given cost function Cx 62500 400x x2 find The pro
For the given cost function C(x) = 62500 + 400x + x^2 find: The production level that will minimize the average cost The minimal average cost
Solution
given cost C(x)=62500+400x +x2
average cost AC(x) =(C(x))/x
average cost AC(x) =(62500+400x +x2)/x
average cost AC(x) =(62500/x)+400 +x
a)AC\'(x)=(-62500/x2)+0 +1
AC\'(x)=(-62500/x2) +1
AC\'\'(x)=(125000/x3)
for minimum average cost AC\'(x)=0,AC\'\'(x)>0
(-62500/x2) +1=0
(62500/x2) =1
x2=62500
x =250
AC\'\'(250)=(125000/2503)>0
production level that will minimise the average cost =250
b) minimal average cost AC(250) =(62500/250)+400 +250
minimal average cost =250+400 +250
minimal average cost =900
