For the following matrix a find the characteristic equation

For the following matrix:

(a) find the characteristic equation

(b) find all eigenvalues

(c) find all eigenvectors corresponding to each eigenvalue

(d) choose as many linearly independent eigenvectors as possible for each eigenvalue.

[1 1 1

2 1 -1

0 -1 1]

Solution

Let the matrix be represented by A

a) In order to find the charateristic Equation,

     det (A - I)= 0

   det 1-     1         1

        2       1-       -1      = 0

         0       -1        1-

(1-) [(1-2)-1] - 1 (2-2) + (-2) = 0

(1-) ( + 2 -2-1) - 2 +2+2=0

(1-)(-2)+2=0

2 -3 +22 =0

-3 +32=0 This is the characteristic equation

b) By solving above equation

     2 ( - + 3 ) = 0

Therefore = 3, 0 ,0 are the eigen values

c) & d) Now the eigen vector for =3

[ -2   1    1        [x1                  [ 0

2    -2   -1         x2           =      0

0    -1   2 ]        x3]                  0]

let us take the augmented matrix

[ -2 1   1    0

   2 -2   -1   0

0    -1 -2   0 ]

R3 = -R1+R2

R2= R1+R2

[ -2 1   1 0

0    -1   0   0

0     0   -2 0 ]

R1=R1+R2

[ -2     0     1     0

    0     -1     0     0

    0       0     -2   0 ]

Therefore -2X1+X3=0

                  -X2=0

                      -2X3=0

Therefore X1= X2=X3=0

Eigen vector= [ 0]

Hence this chaacterstic equation has got a single solution

For = 0

[   1      1     1           [ x1                [ 0

    2     1      -1            x2        =        0

    0      -1    1 ]          x3]                 0 ]

let us take the augmented matrix

[ 1     1    1    0

    2    1    -1   0

    0    -1    1    0 ]

R3=R2+R3

R2=R1+R2

[    1     1     1    0

     3     2    0      0

     2    0     0      0   ]

x1+x2+x3=0

3x1+2x2=0

2x1=0

Threfore x1 = x2= x3=0

Theeigen vector will be [ 0

                                         0

                                         0 ]

Even this eigen vector has got a single solution

For the following matrix: (a) find the characteristic equation (b) find all eigenvalues (c) find all eigenvectors corresponding to each eigenvalue (d) choose as
For the following matrix: (a) find the characteristic equation (b) find all eigenvalues (c) find all eigenvectors corresponding to each eigenvalue (d) choose as
For the following matrix: (a) find the characteristic equation (b) find all eigenvalues (c) find all eigenvectors corresponding to each eigenvalue (d) choose as

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site