The lifetime of an insulating material tested accelerated te
     The lifetime of an insulating material tested (accelerated testing) at 30kV is known to have a mean of 63 hours and standard deviation of 8 hours. A reliability engineer randomly selects n = 50 specimens and determines their lifetimes.  What is the approximate distribution of X the sample average of the 50 lifetimes? (Use Central Limit Theorem.)  Use the result of part (a) to approximate the probability P(X GE 65.20).  
  
  Solution
A)
The sampling distribution of X will have the same mean, but a variance of sigma^2/n.
Thus,
X ~ N(63, 8^2/50)
or
X ~ N(63, 1.28) [ANSWER, sampling mean 63, sampling variance of 1.28]
*********************
B)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    65.2      
 u = mean =    63      
 n = sample size =    50      
 s = standard deviation =    8      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    1.944543648      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.944543648   ) =    0.025914964 [ANSWER]

