Prove 2cotx 2cscxSolutionThere is some mistake So I am con
Prove 2cotx = 2cscx
Solution
There is some mistake . So I am considering it as
[(1+cosx)/sinx] + [sinx/(1-cosx)] = 2cscx + 2cotx
I\'ll start with the right side of the equation:
2cscx + 2cotx = 2/sinx + 2/tanx = 2/sinx + 2/sinx/cosx =
2/sinx + 2cosx/sinx = (2 + 2cosx)/sinx = 2(1 +cosx)/sinx
Now, remember that answer and solve the left side
[(1 + cosx)/sinx] + [sinx/(1 - cosx)] multiply by common denominator
[(1 + cosx)(1 - cosx) + (sinx)(sinx)]/(sinx)(1 - cosx) =
[(1 - cosx^2) + (sinx^2)]/(sinx)(1 - cosx)
Now, we know (cosx^2 +sinx^2) = 1, so (1 - cosx^2) = sinx^2 and the reverse as well
[(sinx^2) + (sinx^2)]/(sinx)(1 - cosx) =
(2sinx^2)/(sinx)(1 - cosx) the sin\'s cancel =
(2sinx)/(1 - cosx)
Now, we multiply the fraction by 1 in the form of (1 + cosx)/(1 + cosx) to change the denominator
(2sinx)(1 + cosx)/(1 - cosx)(1 + cosx) use the rule two above =
(2sinx)(1 + cosx)/(1 - cosx^2) =
(2sinx)(1 + cosx)/(sinx^2) the sin\'s cancel =
2(1 + cosx)/(sinx)
![Prove 2cotx = 2cscxSolutionThere is some mistake . So I am considering it as [(1+cosx)/sinx] + [sinx/(1-cosx)] = 2cscx + 2cotx I\'ll start with the right side o Prove 2cotx = 2cscxSolutionThere is some mistake . So I am considering it as [(1+cosx)/sinx] + [sinx/(1-cosx)] = 2cscx + 2cotx I\'ll start with the right side o](/WebImages/31/prove-2cotx-2cscxsolutionthere-is-some-mistake-so-i-am-con-1090264-1761573952-0.webp)