Suppose the sediment density gcm of a randomly selected spec

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.67 and standard deviation 0.92.

(a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment density is at most 3.00? Between 2.67 and 3.00? (Round your answers to four decimal places.)


(b) How large a sample size would be required to ensure that the probability in part (a) is at least 0.99? (Round your answer up to the nearest whole number.)
specimens

at most 3.00    
between 2.67 and 3.00    

Solution

a)

AT MOST 3.00:

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    3      
u = mean =    2.67      
n = sample size =    25      
s = standard deviation =    0.92      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    1.793478261      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   1.793478261   ) =    0.963551758 [answer]

*******************

BETWEEN 2.67 AND 3.00:

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    2.67      
x2 = upper bound =    3      
u = mean =    2.67      
n = sample size =    25      
s = standard deviation =    0.92      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    0      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.793478261      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.5      
P(z < z2) =    0.963551758      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.463551758   [ANSWER]

************************************************

b)

If the probability is 0.99, the by table or technology, the z score of 3.00 must be

z = 2.326347874

As

z = (X - u) * sqrt(n) / sigma

Then

n = [z*sigma / (X - u)]^2

= ((2.326347874*0.92)/(3.00-2.67))^2

= 42.06269464

Rounding up,

n = 43 [ANSWER]

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.67 and standard deviation 0.92. (a
Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.67 and standard deviation 0.92. (a

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site