Suppose we want to test to see if a die is fair When the die
Suppose we want to test to see if a die is \"fair.\" When the die is tossed 240 times the following results are obtained:
Value of 1; Frequency of 36
Value of 2; Frequency of 47
Value of 3; Frequency of 35
Value of 4; Frquency of 42
Value of 5; Frequency of 44
Value of 6; Frequency of 36
a) find the expected frequencies if the die is fair
b) calculate the chi-squared statistics
c) find the 5% critical value
d) test the hypothesis that the die is fair
Solution
a)
If the die is fair, then we expect all the frequencies to be equal, that is, 240/6 = 40. [ANSWER]
So,
1:40
 2:40
 3:40
 4:40
 5:40
 6:40
**********************
 B)
Doing an observed/expected value table,          
 O   E   (O - E)^2/E  
 36   40   0.4  
 47   40   1.225  
 35   40   0.625  
 42   40   0.1  
 44   40   0.4  
 36   40   0.4  
           
 Using chi^2 = Sum[(O - E)^2/E],          
           
 chi^2 =    3.15   [ANSWER]  
********************************          
 C)
As df = a - 1,           
           
 a =    6      
 df = a - 1 =    5      
           
 Then, the critical chi^2 value is          
           
 significance level =    0.05      
 chi^2(crit) =    11.07049769 [ANSWER]      
***************************
 D.
 Also, the p value is          
           
 p =    0.676872882      
           
 Thus, comparing chi^2 and chi^2(crit) [or, p and significance level], we   FAIL TO REJECT THE NULL HYPOTHESIS.      
           
 Thus, there is no significant evidence that the die is not fair. [CONCLUSION]


