Let the mean success rate of a Poisson process be 5 successe
Let the mean success rate of a Poisson process be 5 successes per hour. a. Find the expected number of successes in a 26 minutes period. (Round your final answer to the nearest whole number.) Expected number of successes b. Find the probability of at least 2 successes in a given 26 minutes period. (Round your answer to 4 decimal places.) Probability c. Find the expected number of successes in a one hour 48 minutes period. (Round your final answer to the nearest whole number.) Expected number of successes d. Find the probability of 8 successes in a given one hour 48 minutes period. (Round your answer to 4 decimal places.) Probability
Solution
(a) expected value= 26*5/60=2
----------------------------------------------------------------------------------------------------------------------------------
(b) Given X~Poisson(mean=2)
P(X=x)=(2^x)*exp(-2)/x!
So the probability is
P(X>=2) =1-P(X=0)-P(X=1)
=1-(2^0)*exp(-2)/1-(2^1)*exp(-2)/1
=0.5940
----------------------------------------------------------------------------------------------------------------------------------
(c) expected value= 108*5/60 =9
----------------------------------------------------------------------------------------------------------------------------------
(d) Given X~Poisson(mean=9 in one hour and 48 minutes)
P(X=x)=(9^x)*exp(-9)/x!
So the probability is
P(X=8) =(9^8)*exp(-9)/8! =0.1318
