Solve yyex where y00y00y00 using laplace transformsSolution
Solve y\'\'+y\'=e^x , where y(0)=0,y\'(0)=0,y\'\'(0)=0 using laplace transforms
Solution
y\'\'+y\' = e^x
The laplace transform of y
Y = Y(s) = L{Y(s)} S
Then
S^2 Y - 1 + SY = 1 / (S-1)
Hence Y = S / (S-1)(S^2 + S )
Y = S / (S-1) S (S+1)
Y = A / (S-1) + B / S + C / (S+ 1 )
A ( S(S+1)) + B ((S_1)(S+1) + C ( S(S-1)) = S
substituting S = -1
C ( -1 (-2)) = S
2 C = -1
C = -1/2
substitute S = 1
2A = 1
A= 1/2
substituting S= 0
B = 0
Thus Y = 1/2(S-1) - 1/2(S+1)
on applying laplace transform
Y = 1/2 (e^x) - 1/2(e^-x)
= e^x / 2 - e^-x /2
