Use the properties of logarithms to solve for x ln3x4ln20lnx

Use the properties of logarithms to solve for x: ln(3x-4)=ln20-ln(x-5) A) x=5,5/3 B)x=0,19/3 C) x= -5, -19/3 D) x=19/3

Solution

ln(3x-4)=ln20-ln(x-5)

Use the log property: logA +logB = log(A*B)

ln(3x -4) +ln(x-5) = ln20

ln(3x-4)*(x-5) = ln20

equating the argumenst on both sides:

(3x-4)(x-5) =20

3x^2 -19x +20 =20

3x^2 -19x =0

x(3x -19) =0

x=0 ; x= 19/3

Option B: x=0 ; x= 19/3

Use the properties of logarithms to solve for x: ln(3x-4)=ln20-ln(x-5) A) x=5,5/3 B)x=0,19/3 C) x= -5, -19/3 D) x=19/3Solutionln(3x-4)=ln20-ln(x-5) Use the log

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site