Use the properties of logarithms to solve for x ln3x4ln20lnx
Use the properties of logarithms to solve for x: ln(3x-4)=ln20-ln(x-5) A) x=5,5/3 B)x=0,19/3 C) x= -5, -19/3 D) x=19/3
Solution
ln(3x-4)=ln20-ln(x-5)
Use the log property: logA +logB = log(A*B)
ln(3x -4) +ln(x-5) = ln20
ln(3x-4)*(x-5) = ln20
equating the argumenst on both sides:
(3x-4)(x-5) =20
3x^2 -19x +20 =20
3x^2 -19x =0
x(3x -19) =0
x=0 ; x= 19/3
Option B: x=0 ; x= 19/3

