Compute the compositions fgx ffx and gfx in each case fx x2
     Compute the compositions f(g(x)), f(f(x)) and g(f(x)) in each case.  f(x) = x^2, g(x) = x +3  f(g(x)) = __  f(f(x)) = _____  g(f(x)) = _____  f(x) = 1/x, g(x) = Squareroot x  f(g(x)) = ____  f(f(x)) = ______  g(f(x)) = ________  f(x) = 4x + 7, g(x) = 1.4(x-7)  f(g(x)) = ___  f(f(x)) =__  g(f(x)) = _________ 
  
  Solution
a) f(x) = x^2, g(x) = x + 3
f(g(x)) = (x + 3)^2 =x^2 + 6x + 9
f(f(x)) = (x^2)^2 =x^4
g(f(x)) = x^2 + 3
b) f(x) = 1/x, g(x) = x^1/2
f(g(x)) = 1/x^1/2 = x^-1/2
f(f(x)) = 1/(1/x) = x
g(f(x)) = (1/x)^1/2 = x^-1/2
c) f(x) = 4x + 7, g(x) = (x - 7)/4
f(g(x)) = (x - 7) + 7 = x
f(f(x)) = 4(4x + 7) + 7 = 16x + 35
g(f(x)) = (4x + 7 - 7)/4 = x

