tanxcosxSolutiongiven tanxcosx but tanx sinx cosx so tanxco
tan(-x)cos(-x)
Solution
given tan(-x)cos(-x)
but tan(x) = sinx /cosx
so tan(-x)cos(-x) = [ sin(-x)/cos(-x) ] . cos(-x)
now cos(-x)/cos(-x) =1
sow we will have only sin(-x) left
so tan(-x)cos(-x) = sin(-x)
but sin(-x) = -sin(x)
so tan(-x)cos(-x) = -sin(x)
![tan(-x)cos(-x)Solutiongiven tan(-x)cos(-x) but tan(x) = sinx /cosx so tan(-x)cos(-x) = [ sin(-x)/cos(-x) ] . cos(-x) now cos(-x)/cos(-x) =1 sow we will have onl tan(-x)cos(-x)Solutiongiven tan(-x)cos(-x) but tan(x) = sinx /cosx so tan(-x)cos(-x) = [ sin(-x)/cos(-x) ] . cos(-x) now cos(-x)/cos(-x) =1 sow we will have onl](/WebImages/32/tanxcosxsolutiongiven-tanxcosx-but-tanx-sinx-cosx-so-tanxco-1091322-1761574688-0.webp)