The data to the right represent the number of days of the gr

The data to the right represent the number of days of the growing season over the last 10 years in a certain geographic area. It is known that the data are normally distributed and that s = 23.99 days. Using these values as a simple random sample, construct a 95% confidence interval for the population standard deviation of the number of days in the growing season. The 95% confidence interval is

Solution

Getting the standard deviation of the sample,

s = 23.99166522

As              
              
df = n - 1 =    9          
alpha = (1 - confidence level)/2 =    0.025          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    19.0227678          
chi^2(alpha/2) =    2.7003895          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    272.3263016          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    1918.389921          
              
Thus, the confidence interval for the variance is              
              
(   272.3263016   ,   1918.389921   )
              
Also, for the standard deviation, getting the square root of the bounds,              
              
(   16.50231201   ,   43.79942832   ) [ANSWER]

 The data to the right represent the number of days of the growing season over the last 10 years in a certain geographic area. It is known that the data are nor

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site