Solve the linear ODE y 2y e2xSolutionGiven that y 2y e2x
Solve the linear O.D.E.: y\' + 2y = e^-2x
Solution
Given that
y\' + 2y = e-2x
The given single order linear equation is in the form of y\' + p(x)y = q(x) then the general solution is ,
y.e p(x)dx = q(x).e p(x)dx + c.................................1
y\' + 2y = e-2x
Hence,
p(x) = 2 , q(x) = e-2x
e p(x)dx = e 2 dx
=e 2. dx
= e2x [since, dx = x ]
Substitute e p(x)dx = e2x , q(x) = e-2x in equation 1
y.e p(x)dx = q(x).e p(x)dx + c
y.e2x = e-2x.e2x + c
ye2x = e-2x + 2x + c [ since, am.an = am+n ]
= e0dx + c
= 1 dx + c [ since, e0 = 1 ]
= 1. dx + c
= 1.x + c
ye2x = x + c
y = ( x + c ) / e2x
y = e-2x( x + c ) [ since, 1/am = a-m ]
Therefore,
The general solution is , y = e-2x( x + c )
