Solve the linear ODE y 2y e2xSolutionGiven that y 2y e2x

Solve the linear O.D.E.: y\' + 2y = e^-2x

Solution

Given that

y\' + 2y = e-2x

The given single order linear equation is in the form of y\' + p(x)y = q(x) then the general solution is ,

   y.e p(x)dx =   q(x).e p(x)dx + c.................................1

y\' + 2y = e-2x

Hence,

p(x) = 2 , q(x) =   e-2x

e p(x)dx = e 2 dx

   =e 2. dx

   = e2x [since, dx = x ]

Substitute e p(x)dx = e2x , q(x) = e-2x in equation 1

   y.e p(x)dx =   q(x).e p(x)dx + c

y.e2x =   e-2x.e2x + c

   ye2x = e-2x + 2x + c [ since, am.an = am+n ]

=   e0dx + c

   = 1 dx + c [ since, e0 = 1 ]

= 1. dx + c

= 1.x + c

ye2x = x + c

y = ( x + c ) / e2x

y = e-2x( x + c ) [ since, 1/am = a-m ]

Therefore,

The general solution is , y = e-2x( x + c )

 Solve the linear O.D.E.: y\' + 2y = e^-2xSolutionGiven that y\' + 2y = e-2x The given single order linear equation is in the form of y\' + p(x)y = q(x) then th

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site