Assume that the weights of all packages of a certain brand o
     Assume that the weights of all packages of a certain brand of cookies are no distributed with a mean of 32 ounces and a standard deviation of 0.3 ounces  Determine the probability that the mean weight of a random sample of 20 packages of this brand of cookies will be:  Between 31.8 and 31.9 ounces  At least 22 ounces 
  
  Solution
Sample Mean ( u ) =32
 Sample Standard Deviation ( sd )= 0.3/ Sqrt ( 20 ) = 0.0671
 Number ( n ) = 20
 Normal Distribution = Z= X- u / (sd/Sqrt(n) ~ N(0,1)                  
               
 a)
 To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 31.8) = (31.8-32)/0.3/ Sqrt ( 20 )
 = -0.2/0.0671
 = -2.9814
 = P ( Z <-2.9814) From Standard Normal Table
 = 0.00143
 P(X < 31.9) = (31.9-32)/0.3/ Sqrt ( 20 )
 = -0.1/0.0671 = -1.4907
 = P ( Z <-1.4907) From Standard Normal Table
 = 0.06802
 P(31.8 < X < 31.9) = 0.06802-0.00143 = 0.0666                  
b)
 P(X < 22) = (22-32)/0.3/ Sqrt ( 20 )
 = -10/0.0671= -149.0712
 = P ( Z <-149.0712) From Standard NOrmal Table
 = 0                  
 P(X > = 22) = 1 - P(X < 22)
 = 1 - 0 = 1                  

