Determine 462 and hence determine 5603 mod 462SolutionConver
Solution
Converting 603 to bianry form
1001011011
so to determine the mod the problem can be written as
(5^1 * 5^2 * 5^8 * 5^16 * 5^64 * 5^512) mod 462
5^1 mod 462= 5
5^2 mod 462= (5^1 * 5^1) mod 462= (5^1 mod 462* 5^1 mod 462) mod 462
5^2 mod 462= (5 * 5) mod 462= 25 mod 462
5^2 mod 462= 25
5^4 mod 462= (5^2 * 5^2) mod 462= (5^2 mod 462* 5^2 mod 462) mod 462
5^4 mod 462= (25 * 25) mod 462= 625 mod 462
5^4 mod 462= 163
5^8 mod 462= (5^4 * 5^4) mod 462= (5^4 mod 462* 5^4 mod 462) mod 462
5^8 mod 462= (163* 163) mod 462
5^8 mod 462= 235
5^16 mod 462= (5^8 * 5^8) mod 462= (5^8 mod 462* 5^8 mod 462) mod 462
5^16 mod 462= (235 * 235) mod 462= 16 mod 19
5^16 mod 19 = 247
5^32 mod 462= (5^16 * 5^16) mod 462= (5^16 mod 462* 5^16 mod 462) mod 462
5^32 mod 462= (247* 247) mod 462
5^32 mod 462= 25
5^64 mod 462= (5^32 * 5^32) mod 462= (5^32 mod 462* 5^32 mod 462) mod 462
5^64 mod 462= (25 * 25) mod 462
5^64 mod 462= 163
Similarly, the mod for higher power of 2 can be written as
5^128 mod 462= 235
5^256 mod 462= 247
5^512 mod 462= 25
Step 3: Use modular multiplication properties to combine the calculated mod C values
5^603 mod 462 = (5^1 * 5^2 * 5^8 * 5^16 * 5^64 * 5^512) mod 462
5^603 mod 462 = ( 5^1 mod 462 * 5^2 mod 462 * 5^8 mod 462 * 5^16 mod 462 * 5^64 mod 462 * 5^512 mod 462) mod 462
5^603 mod 462 = ( 5 * 25 * 235 * 247 * 163 * 25 ) mod 462
5^603 mod 462 = 125
5^603 mod 462 = 125
