The following sample information shows the number of defecti
The following sample information shows the number of defective units produced on the day shift and the afternoon shift for a sample of four days last month.
At the .05 significance level, can we conclude there are more defects produced on the day shift?
| The null and alternate  hypotheses are: | 
| H0 : d 0 | 
| H1 : d > 0 | 
| The following sample information shows the number of defective units produced on the day shift and the afternoon shift for a sample of four days last month. | 
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   <=   0  
 Ha:   u1 - u2   >   0  
 At level of significance =    0.05          
 As we can see, this is a    right   tailed test.  
 Now, the critical value for t is, as
df = n1 + n2 - 2 = 6              
               
 tcrit = 1.943180281
Hence, we reject Ho if t > 1.94. [ANSWER]
**************************
   
 Calculating the means of each group,              
               
 X1 =    13.25          
 X2 =    12          
               
 Calculating the standard deviations of each group,              
               
 s1 =    3.593976442          
 s2 =    3.16227766          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    4          
 n2 = sample size of group 2 =    4          
 Thus, df = n1 + n2 - 2 =    6          
 Also, sD =    2.393567769          
               
 Thus, the t statistic will be              
               
 t = [X1 - X2 - uD]/sD =    0.522   [ANSWER, TEST STATISTIC]      
 *****************************
               
 where uD = hypothesized difference =    0          
               
 Also, using p values,              
               
 p =    0.310109983   [ANSWER, P VALUE]
This p value is greater than 0.1.
*****************************      
               
 Comparing this to the significance level,    WE DO NOT REJECT THE NULL HYPOTHESIS.          
               


